Python Decorators

Often times in python there comes a need to have multiple functions act in a similar manner. It could be anything from making sure that similar functions output the right type of result, they all log when they are called or all report exceptions in the same way.

decorators An easy and repeatable way to accomplish this is . They look like:

@decorator
def my_function(print_string="Hello World"):
    print(print_string)

my_function()
# Hello World

Decorators are simply wrapping a function with another function. In other words, it is exactly the same as doing:

def my_function(print_string="Hello World"):
    print(print_string)

decorator(my_function)("My message")
# My message

So what does a decorator look like?

Decorator Template

from functools import wraps

def decorator(func):
    """This is an example decorators"""
    @wraps(func)
    def container(*args, **kwargs):
        # perform actions before running contained function
        output = func(*args, **kwargs)
        # actions to run after contained function
        return output
    return container

Running the code above does nothing extra currently. It is showing how a decorator runs another function within itself.

@decorator
def my_function():
    print "Hello World"

my_function()
# "Hello World"

Line by line breakdown

def decorator(func):

The name of the decorator function, which takes the wrapped function as its single argument.

@wraps(func)

Wraps is a built-in method that replaces the decorators name and docstring with that of the wrapped function, the section after the line by line breakdown explains why this is necessary.

def container(*args, **kwargs):

This inner function collects the parameters and keyword parameters that are going to be passed to the original function. This allows the decorator access to incoming arguments to verify or modify before the function is ever run.

output = func(*args, **kwargs)

This runs the function with the original arguments and captures the output. It is also possible to return a completely different result. It is more common to check or modify the output, like if you wanted to make sure everything returned was an integer.

return output

Don’t forget to actually return the original function’s output (or a custom one). Otherwise the function will simply return None.

return container

The container function is the actual function being called,  hence why *args, **kwargs are passed to it. It is necessary to return it from the outside decorator so it can be called.

The importance of Wraps

We need to incorporate wraps so that the function name and docstring appear to be from the wrapped function, and not those of the wrapper itself.

@decorator
def my_func():
    """Example function"""
    return "Hello"

@decorator_no_wrap
def second_func():
    """Some awesome docstring"""
    return "World"

help(my_func)
# Help on function my_func:

# my_func()
#    Example function

help(second_func)
# Help on function container:

# container(*args, **kwargs)

It is possible, though more work to accomplish the same thing yourself.

def decorator(func):
    """This is an example decorators"""
    def container(*args, **kwargs):
        return func(*args, **kwargs)
    container.__name__ = func.__name__
    container.__doc__ = func.__doc__
    return container

Useful Example

Now lets turn it into something useful. In this example we will make sure that the function returns the expected type of result. Otherwise it will raise an exception for us so there are not hidden complications down the road.

from functools import wraps

def isint(func):
    """ 
    This decorator will make sure the resulting value 
    is a integer or else it will raise an exception.
    """
    @wraps(func)
    def container(*args, **kwargs):
        output = func(*args, **kwargs)
        if not isinstance(output, int):
            raise TypeError("function did not return integer")
        return output
    return container

@isint
def add(num1, num2):
    """Add two numbers together and return the results"""
    return num1 + num2

print(add(1, 2))
# 3

print(add("this", "that"))
# Type Error: function did not return integer

Regular decorators are already called on execution, so you do not need to add ()s after their name, such as @isint. However, if the decorator accepts arguments, aka a meta-decorator, it will require () even if nothing additional is passed to it.

Meta-decorators

Passing arguments to a decorator turns it into a Meta-decorator. To pass these arguments in, it requires either another function wrapped around the decorator or turn the entire thing into a class.

from functools import wraps

def istype(instance_type=int):
    def decorator(func):
        """ 
        This decorator will make sure the resulting value is the 
        type specified or else it will raise an exception. 
        """
        @wraps(func)
        def container(*args, **kwargs):
            output = func(*args, **kwargs)
            if not isinstance(output, instance_type):
                raise TypeError("function did not return proper type")
            return output
        return container
    return decorator

@istype()
def add(num1, num2):
    """Add two numbers together and return the results"""
    return num1 + num2

@istype(str)
def reverse(forward_string):
    """Reverse and return incoming string"""
    return forward_string[::-1]


print(add(1, 2))
# 3

print(reverse("Hello"))
# "olleH"

print(add("this", "that"))
# Type Error: function did not return proper type

Remember running a decorator is equivalent to:

decorator(my_function)("My message")

Running a meta-decorator adds an additional layer.

reversed_string = istype(str)(reverse)("Reverse Me")

Hence why @decorator doesn’t require to be called when put above a function, but @istype() does.

You can also create this meta-decorator as a class instead of another function.

class IsType: # Instead of 'def istype'

    def __init__(self, inc_type=int):
        self.inc_type = inc_type

    def __call__(self, func): # Replaces 'def decorator(func)'
        @wraps(func)
        def container(*args, **kwargs):
            output = func(*args, **kwargs)
            if not isinstance(output, self.inc_type):
                raise TypeError("function did not return proper type")
            return output
        return container

In functionality they are the same, but be aware they are technically different types. This will really only impact code inspectors and  those trying to manually navigate code, so it is not a huge issue, but is something to be aware of.

type(IsType)
<class 'type'>

type(istype)
<class 'function'>

 Things to keep in mind

  1. Order of operation does matter. If you have multiple decorators around a single function keep in mind they are run from top to bottom
  2. Once a function is wrapped, it cannot be run without the wrapper.
  3.  Meta-decorators require the additional parentheses, regular decorators do not.